VIDYA BHAWAN BALIKA VIDYA PITH शक्तिउत्थानआश्रमलखीसरायबिहार

Class :-12(Maths)

Date:- 20.04.2021

Properties of Transpose Conjugate of a Matrix

(i) $(A^{\cdot})^{\cdot} = A$ (ii) $(A + B)^{\cdot} = A^{\cdot} + B^{\cdot}$

(iii) $(A + D)^* = A^*$ (iii) $(kA)^* = kA^*$

 $(III) (KA)^* = KA^*$ $(IV) (AB)^* = B^*A^*$

 $(IV) (AD)^{*} = D^{*}A$ $(V) (AD)^{*} = (A)^{*}$

 $(V) (An)^{*} = (A^{*})n$

Some Special Types of Matrices

1. Orthogonal Matrix

A square matrix of order n is said to be orthogonal, if $AA' = I_n = A'A$ Properties of Orthogonal Matrix

(i) If A is orthogonal matrix, then A' is also orthogonal matrix.

(ii) For any two orthogonal matrices A and B, AB and BA is also an orthogonal matrix.

(iii) If A is an orthogonal matrix, A¹ is also orthogonal matrix.

2. Idempotent Matrix

A square matrix A is said to be idempotent, if $A_2 = A$.

Properties of Idempotent Matrix

(i) If A and B are two idempotent matrices, then

- AB is idempotent, if AB = BA.
- A + B is an idempotent matrix, iff AB = BA = 0
- AB = A and BA = B, then $A^2 = A$, $B^2 = B$

(ii)

- If A is an idempotent matrix and A + B = I, then B is an idempotent and AB = BA = 0.
- Diagonal (1, 1, 1, ...,1) is an idempotent matrix.
- If I_1 , I_2 and I_3 are direction cosines, then

is an idempotent as $|\Delta|^2 = 1$.

A square matrix A is said to be involutory, if A² = I

4. Nilpotent Matrix

A square matrix A is said to be nilpotent matrix, if there exists a positive integer m such that $A^2 = 0$. If m is the least positive integer such that $A^m = 0$, then m is called the index of the nilpotent matrix A.

5. Unitary Matrix

A square matrix A is said to be unitary, if A'A = I

Hermitian Matrix

A square matrix A is said to be hermitian matrix, if $A = A^{\cdot}$ or

 $= a_{ij}$, for a_{ji} only.

Properties of Hermitian Matrix

1. If A is hermitian matrix, then kA is also hermitian matrix for any non-zero real number k.

- 2. If A and B are hermitian matrices of same order, then $\lambda_1 A + \lambda B$, also hermitian for any non-zero real number λ_1 , and λ .
- 3. If A is any square matrix, then AA* and A* A are also hermitian.
- 4. If A and B are hermitian, then AB is also hermitian, iff AB = BA
- 5. If A is a hermitian matrix, then A is also hermitian.
- 6. If A and B are hermitian matrix of same order, then AB + BA is also hermitian.
- 7. If A is a square matrix, then A + A* is also hermitian,
- 8. Any square matrix can be uniquely expressed as A + iB, where A and B are hermitian matrices.

Skew-Hermitian Matrix

A square matrix A is said to be skew-hermitian if $A^* = -A$ or a_{μ} for every i and j. **Properties of Skew-Hermitian Matrix**

- 1. If A is skew-hermitian matrix, then kA is skew-hermitian matrix, where k is any non-zero real number.
- 2. If A and B are skew-hermitian matrix of same order, then $\lambda_1 A + \lambda_2 B$ is also skewhermitian for any real number λ_1 and λ_2 .
- 3. If A and B are hermitian matrices of same order, then AB BA is skew-hermitian.
- 4. If A is any square matrix, then $A A^{*}$ is a skew-hermitian matrix.
- 5. Every square matrix can be uniquely expressed as the sum of a hermitian and a skewhermitian matrices.
- 6. If A is a skew-hermitian matrix, then A is a hermitian matrix.
- 7. If A is a skew-hermitian matrix, then A is also skew-hermitian matrix.